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Abstract. Properties of relevance for the equation of state for a high-density glass are discussed. We review
the effects of failure waves, comminuted phase, and compaction on the validity of the Mie-Grüneisen EOS.
The specific heat and the Grüneisen parameter at standard conditions for a ρ0

� 5 � 085 g/cm3 glass (“Glass
A”) is then estimated to be 522 mJ/g/K and 0 � 1 � 0 � 3, respectively. The latter value is substantially smaller
than the value of 2 � 1751 given in the SESAME tables for a high-density glass with ρ0

� 5 � 46 g/cm3 [1].
The present unusual value of the Grüneisen parameter is confirmed from the volume dependence determined
from fitting the Mie-Grüneisen EOS to shock data in Ref. [2].

INTRODUCTION

Brittle materials can exhibit failure waves. In
glasses this phenomena is well studied; failure waves
are found to exist in high- and low-density glasses.
For example, the Hugoniot Elastic Limit (HEL) for
DEDF glass (ρ0

� 5 � 18 g/cm3) is 4 � 3 GPa [3]. A
slower failure wave is present for peak stresses from
below the HEL to about 2 times the HEL. Thus,
for certain peak states there is a complicated 3-wave
structure with the elastic, shock and failure waves
(there is evidence, though, that the failure wave is
actually a diffusive process [4]). The Hugoniot rela-
tions have been shown to hold, to a good approxima-
tion, between the intact material and the comminuted
material across the failure wave [3]. I also note that
the failure wave not is due to tensile stress.

There are several studies of densification of sil-
ica glass [5] but not leaded glass. Silica has an open
structure while high-density glasses with high lead
content are considered "filled" materials and should
not exhibit the large densification seen in silica. Note,
however, in Fig. 1 that even though silica and low-
density Pyrex glass exhibit a high degree of com-
paction, there also is noticeable compaction in the
high-density glasses. I will discuss this issue further
below in the context of composition. Note that the
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FIGURE 1. Hugoniots for 4 different glasses: Fused silica
ρ0

� 2 � 204 g/cm3 (box), Pyrex ρ0
� 2 � 230 g/cm3 (trian-

gle), ρ0
� 4 � 817 g/cm3 (diamond), and ρ0

� 5 � 085 g/cm3

(star). Data are from Ref. [2].

compaction in excess of comminution in the failure
wave probably is due to a structural phase transition
(e. g. Ref. [5]) in the grains of the comminuted mate-
rial. Owing to its higher density the Mie-Grüneisen
EOS should be valid for the comminuted glass.

Because of the complicated behavior of glasses



I did not model the cold curve, pc
�
V � , directly. In-

stead my analysis is based on available shock data,
the Hugoniot relations, the Mie-Grüneisen EOS and
two models relating the Grüneisen parameter to the
derivatives of the cold curve. I will compare my
result with data derived from modelling the cold
curve [1].

ROUGH ESTIMATE OF THE GRÜNEISEN
PARAMETER

With knowledge of the linear thermal expansion,
α , the bulk speed of sound, c0, and the specific heat,
cV , the thermodynamic Grüneisen parameter, Γ, can
be deduced from the relation Γ � 3 α c2

0 � cV .

Estimate of specific heat

The specific heat can be estimated, by the Dulong-
Petit law, to be 3kBN, where kB is the Boltzmann’s
constant and N is the number of atoms per unit mass.
This value is only dependent on the composition of
the glass (larger lead content gives smaller number of
atoms per unit mass). Since we do not know the exact
composition of Glass A it needs to be estimated.
Known compositions: (wt %)

• Fused silica, density 2.20 g/cm3: SiO2 (100).
• Glass ZF1, density 3.86 g/cm3: SiO2 (41.32),

K2O (7.00), As2O3 (0.50), PbO (51.18) [6].
• DEDF, density 5.18 g/cm3: SiO2 (27.4), K2O

(1.5), As2O3 (0.1), PbO (71.0) [3].
From the known compositions and densities above

we can calculate the number of single atoms in a
unit volume for each of these glasses. This number
turns out to be almost the same regardless of compo-
sition. That is, the density difference between these
three different glasses is mainly due to substitution
of heavy PbO for light SiO2 (trade 2 SiO2 for 3
PbO). ZF1 and DEDF have exactly the same num-
ber of single atoms (within error-bars of the compo-
sition) while fused silica has 3% more atoms than
these materials in the same volume. I assume the
same total number of atoms in a volume in Glass
A as in DEDF and ZF1. For simplicity I keep the
K2O and As2O3 content the same as in DEDF. The
amount of PbO is, by far, the most important param-
eter for the density anyway. With these assumptions

the composition is calculated to be:
• Glass A, density ρ0

� 5 � 085 g/cm3: SiO2 (28.4),
K2O (1.5), As2O3 (0.1), PbO (70.0).

The number of atoms in a unit volume for the
high-density glasses above is 0 � 1065 NA cm � 3 (NA
is Avogadro’s constant), which gives a specific heat
of 522 mJ/g/K for Glass A.

Note that in the classical limit the specific heat
only depends on the number of atoms in a unit vol-
ume of the material and not on type of atoms. Since
this number is nearly constant in glasses, the specific
heat scales linearly with the inverse of the density
(or linearly with the specific volume). The specific
heat of the high-density glass in Ref. [1], with den-
sity 5 � 46 g/cm3, can thus be estimated to 486 mJ/g/K.
The value extracted from the data in Ref. [1] itself,
by thermodynamic relations, is approximately 530
mJ/g/K, which shows that using the linearity for esti-
mating the specific heat in glasses is sufficiently ac-
curate for these purposes.

Estimating the Grüneisen parameter

Data for 31 different glasses are available in
Ref. [7]. Where possible I have made consistency
checks between these data and data from other
sources and found no inconsistencies. Using the
above estimate for the specific heat, the DEDF bulk
speed of sound, 2 � 60 km/s, and the range of lin-
ear thermal expansions from the data sheet [7], the
Grüneisen parameter is estimated to Γ � 0 � 02 � 0 � 38.
The large uncertainty in this value stems from the
thermal expansion, which varies substantially be-
tween glasses. The 3 leaded glasses available in the
data sheet have thermal expansions of 83 � 95 	 10 � 7

K � 1, implying a Grüneisen parameter in the upper
end of the interval (Γ � 0 � 32 � 0 � 37). Fused sil-
ica, as an extreme, has only 5 � 5 	 10 � 7 K � 1 (Γ �
0 � 02), while Pyrex has the more ordinary value of
32 � 5 	 10 � 7 K � 1 (Γ � 0 � 13). We clearly see, how-
ever, that the Grüneisen parameter in glass is signifi-
cantly lower than in more ordinary materials, where
it ranges from 1 � 0 to 3 � 0.

This range of Grüneisen parameter values is about
a factor of ten smaller than the value presented in
Ref. [1] for a high-density glass with 5 � 46 g/cm3. The
speed of sound derived from the data in Ref. [1] is
2 � 8 km/s, not very different from the speed of sound
we have used. The full difference is instead due to
a linear thermal expansion value of 481 	 10 � 7 K � 1



derived from the data in Ref. [1] (giving a Γ � 2 � 13,
the value given in Ref. [1] being 2 � 1751). I note
that none of the 31 glasses in Ref. [7] has a thermal
expansion coefficient even a quarter as large as this
value.

FURTHER DISCUSSION ON COMPACTION

Contrary to some opinions, I believe a struc-
tural phase transition contributes to the compaction
of the high-density glasses. All glasses with known
composition mentioned above have nearly the same
number of atoms in a unit volume, which indicates
that there are no large structural differences between
high and low-density glasses. However, Pb atoms
in a condensed phase occupies larger volume than
Si/O atoms (in the variety of silica phases the near-
est neighbor (nn) distance is approximately 1 � 75 Å
while the nn distance in a Pb crystal is 3 � 50 Å). This
implies that the Hugoniot curve stiffens, governed
by the inter-atomic forces in the compact phase, at a
larger relative volume for the leaded glasses than for
the low-density glasses. This is indeed seen in Fig. 1.

The statement that there is no compaction in high
density glasses [3] is based on a comparison of mea-
surements of the longitudinal strain in soda-lime
glass, Ref. [8] Fig. 6, and DEDF, Ref. [9] Fig. 5. I
do not find this conclusion well supported.

MIE-GRÜNEISEN EOS

We neglect any contribution from the electrons.
Using the Mie-Grüneisen EOS, standard thermody-
namics relations, a model (Slater-Landau (SL) or
Dugdale-MacDonald (DM) [10]) for connecting the
Grüneisen parameter to the derivatives of the cold
curve, and the Hugoniot relations, pH

�
V � can be

written as a function of only the cold curve pc
�
V � and

the volume, V0c, where pc
�
V0c � � 0. The procedure is

outlined in Ref. [10], Chapter 13. By assuming that

pc
�
V � � 6

∑
i 
 1

ai

�
V0c
V � i

3  1 �
(1)

and fitting the parameters ai to the pH
�
V � data given

in Ref. [2], the cold curve, and thereby the Mie-
Grüneisen EOS, can be determined. In Fig. 2 the cold
curve and the resulting Hugoniot are shown together
with the data to which they were fitted. Note that we
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FIGURE 2. The resulting Hugoniot (black) and cold curve
(gray) for Glass A from fitting to data in Ref. [2] (dots).
The dashed cold curve results from the DM model and the
solid from the SL model of the Grüneisen parameter. The
dashed black line shows the Hugoniot derived from Eqn. 2.
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FIGURE 3. The Grüneisen parameter versus volume for
Glass A. The solid curve corresponds to the SL model and
the dashed to the DM model.

ignore the elastic region at low pressure. Fig. 3 shows
the volume dependence of the Grüneisen parameter.

In the fitted curves, V0c is chosen so that the bulk
speed of sound is 2 � 6 km/s (V0c

� 0 � 196300 cm3/g in
the SL model, and 0 � 196600 cm3/g in the DM model.
The standard volume is V0

� 0 � 196657 cm3/g). The
lower of the cold curves in Fig. 2 and the upper of
the Grüneisen parameter curves in Fig. 3 are results



using the SL model (solid lines), the other two corre-
sponding curves (dashed) result from the DM model.
In this case the SL model seems to work best since
it gives a more sensible value for the internal en-
ergy E0, which is the temperature dependent specific
heat integrated from 0 to standard temperature. In
the SL we obtain a value of E0 that corresponds to
a mean specific heat of 364 mJ/g/K in the 0 � 300
K range while the DM model gives a value of only
156 mJ/g/K.

Note that this derivation of the Grüneisen parame-
ter is independent of the rough estimate of the value
at standard conditions made above. This indicates
that the present very low value is internally consis-
tent.

The cold curve corresponding to the SL model
(full gray line in Fig. 2), the model for the Grüneisen
parameter I recomend in this case, is obtained
from Eqn. 1 with fitting parameters (a1, a2, a3, a4,
a5, a6) � ( � 2989 � 05, 8360 � 78, � 7125 � 9, 313 � 609,
2149 � 33, � 708 � 758 ). From this cold curve, the Mie-
Grüneisen EOS and thereby the Hugoniot, pH

�
V �

can be determined and a relation between the shock
wave velocity, us, and particle velocity, up, in the
shock wave can be calculated. I found that at least
a third degree polynomial was needed to model this
curve,

us
� 2 � 64 � 0 � 51up � 0 � 42up

2 � 0 � 05up
3

�
(2)

as is seen in Fig. 4. The Hugoniot derived from
Eqn. 2 is shown as a black dashed line in Fig. 2.

CONCLUSION

For a high-density glass with ρ0
� 5 � 085 g/cm3, the

Grüneisen parameter has an unusual behavior and its
value at standard conditions is in the range 0.1-0.3.
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